How the Solvers Handle User Provided Callbacks#
The solver objects in PETSc, KSP (optionally), SNES, and TS
require user provided callback functions (and contexts for the
functions) that define the problem to be solved. These functions are
supplied by the user with calls such as SNESSetFunction(SNES,...)
and TSSetRHSFunction(TS,...). One would naturally think that the
functions provided would be attached to the appropriate solver object,
that is, that the SNES callbacks would be attached to the SNES
object and TS callbacks to the TS object. This is not the case.
Or possibly one might think the callbacks would be attached to the
DM object associated with the solver object. This is also not the
case. Rather, the callback functions are attached to an inner nonpublic
DMXXX object (XXX is KSP, SNES, or TS) that is
attached to the DM that is attached to the XXX solver object.
This convoluted design is to support multilevel and multidomain solvers
where different levels and different domains may (or may not) share the
same callback function or callback context. You can control exactly what
XXX/DM objects share a common DMXXX object.
Fig. 42 Three levels of KSP/DM share the same DMKSP#
In the preceding figure, we depict how three levels of KSP
objects share a common DMKSP object. The code to access the inner
DMKSP object is
DM dm_2;
DMKSP dmksp;
KSPGetDM(ksp_2,&dm_2);
DMGetDMKSP(dm_2,&dmksp);
To obtain a new DMKSP object for which you can change the callback functions (or their contexts) without affecting the original DMKSP, call
DM dm_2;
DMKSP dmksp;
KSPGetDM(ksp_2,&dm_2);
DMGetDMKSPWrite(dm_2,&dmksp_2);
This results in the object organization as indicated in the following figure
Fig. 43 Two levels of KSP/DM share the same DMKSP; one has its own private copy#
The DMKSP object is essentially the list of callback functions and
their contexts, for example,
typedef struct _p_DMKSP *DMKSP;
typedef struct _DMKSPOps *DMKSPOps;
struct _DMKSPOps {
PetscErrorCode (*computeoperators)(KSP,Mat,Mat,void*);
PetscErrorCode (*computerhs)(KSP,Vec,void*);
PetscErrorCode (*computeinitialguess)(KSP,Vec,void*);
PetscErrorCode (*destroy)(DMKSP*);
PetscErrorCode (*duplicate)(DMKSP,DMKSP);
};
struct _p_DMKSP {
PETSCHEADER(struct _DMKSPOps);
void *operatorsctx;
void *rhsctx;
void *initialguessctx;
void *data;
DM originaldm;
void (*fortran_func_pointers[3])(void); /* Store our own function pointers so they are associated with the DMKSP instead of the DM */
};
We now explore in more detail exactly how the solver calls set by the
user are passed down to the inner DMKSP object. For each user level
solver routine for setting a callback a similar routine exists at the
DM level. Thus, XXXSetY(XXX,...) has a routine
DMXXXSetY(DM,...).
PetscErrorCode KSPSetComputeOperators(KSP ksp,PetscErrorCode (*func)(KSP,Mat,Mat,void*),void *ctx)
{
DM dm;
PetscFunctionBegin;
PetscValidHeaderSpecific(ksp,KSP_CLASSID,1);
PetscCall(KSPGetDM(ksp,&dm));
PetscCall(DMKSPSetComputeOperators(dm,func,ctx));
if (ksp->setupstage == KSP_SETUP_NEWRHS) ksp->setupstage = KSP_SETUP_NEWMATRIX;
PetscFunctionReturn(0);
}
The implementation of DMXXXSetY(DM,...) gets a “writable” version of
the DMXXX object via DMGetDMXXXWrite(DM,DMXXX*) and sets the
function callback and its context into the DMXXX object.
PetscErrorCode DMKSPSetComputeOperators(DM dm,PetscErrorCode (*func)(KSP,Mat,Mat,void*),void *ctx)
{
DMKSP kdm;
PetscFunctionBegin;
PetscValidHeaderSpecific(dm,DM_CLASSID,1);
PetscCall(DMGetDMKSPWrite(dm,&kdm));
if (func) kdm->ops->computeoperators = func;
if (ctx) kdm->operatorsctx = ctx;
PetscFunctionReturn(0);
}
The routine for DMGetDMXXXWrite(DM,DMXXX*) entails a duplication of
the object unless the DM associated with the DMXXX object is the
original DM that the DMXXX object was created with. This can be
seen in the following code.
PetscErrorCode DMGetDMKSPWrite(DM dm,DMKSP *kspdm)
{
DMKSP kdm;
PetscFunctionBegin;
PetscValidHeaderSpecific(dm,DM_CLASSID,1);
PetscCall(DMGetDMKSP(dm,&kdm));
if (!kdm->originaldm) kdm->originaldm = dm;
if (kdm->originaldm != dm) { /* Copy on write */
DMKSP oldkdm = kdm;
PetscCall(PetscInfo(dm,"Copying DMKSP due to write\n"));
PetscCall(DMKSPCreate(PetscObjectComm((PetscObject)dm),&kdm));
PetscCall(DMKSPCopy(oldkdm,kdm));
PetscCall(DMKSPDestroy((DMKSP*)&dm->dmksp));
dm->dmksp = (PetscObject)kdm;
kdm->originaldm = dm;
}
*kspdm = kdm;
PetscFunctionReturn(0);
}
The routine DMGetDMXXX(DM,DMXXX*) has the following form.
PetscErrorCode DMGetDMKSP(DM dm,DMKSP *kspdm)
{
PetscFunctionBegin;
PetscValidHeaderSpecific(dm,DM_CLASSID,1);
*kspdm = (DMKSP) dm->dmksp;
if (!*kspdm) {
PetscCall(PetscInfo(dm,"Creating new DMKSP\n"));
PetscCall(DMKSPCreate(PetscObjectComm((PetscObject)dm),kspdm));
dm->dmksp = (PetscObject) *kspdm;
(*kspdm)->originaldm = dm;
PetscCall(DMCoarsenHookAdd(dm,DMCoarsenHook_DMKSP,NULL,NULL));
PetscCall(DMRefineHookAdd(dm,DMRefineHook_DMKSP,NULL,NULL));
}
PetscFunctionReturn(0);
}
This routine uses DMCoarsenHookAdd() and DMRefineHookAdd() to
attach to the DM object two functions that are automatically called
when the object is coarsened or refined. The hooks
DMCoarsenHook_DMXXX() and DMRefineHook_DMXXX() have the same form:
static PetscErrorCode DMCoarsenHook_DMKSP(DM dm,DM dmc,void *ctx)
{
PetscFunctionBegin;
PetscCall(DMCopyDMKSP(dm,dmc));
PetscFunctionReturn(0);
}
where
PetscErrorCode DMCopyDMKSP(DM dmsrc,DM dmdest)
{
PetscFunctionBegin;
PetscValidHeaderSpecific(dmsrc,DM_CLASSID,1);
PetscValidHeaderSpecific(dmdest,DM_CLASSID,2);
PetscCall(DMKSPDestroy((DMKSP*)&dmdest->dmksp));
dmdest->dmksp = dmsrc->dmksp;
PetscCall(PetscObjectReference(dmdest->dmksp));
PetscCall(DMCoarsenHookAdd(dmdest,DMCoarsenHook_DMKSP,NULL,NULL));
PetscCall(DMRefineHookAdd(dmdest,DMRefineHook_DMKSP,NULL,NULL));
PetscFunctionReturn(0);
}
ensures that the new DM shares the same DMXXX as the parent
DM and also inherits the hooks if it is refined or coarsened.
If you provide callbacks to a solver after the DM associated with
a solver has been refined or coarsened, those child DMs will not
share a common DMXXX.
The TS object manages its callback functions in a way similar to
KSP and SNES, although there are no multilevel TS
implementations so in theory the DMTS object is currently unneeded.